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Recent scholarship has drawn attention to the utility of Bayesian methods for qualitative
research and the need for transparency and reproducibility in application of its methods.
It has also pointed out shortcomings, such the high training requirement for using these
methods and their inability to compare theories that are not mutually exclusive. This pa-
per introduces free and open source software for robust and replicable Bayesian process
tracing. It also introduces a new method for simultaneous assessment of non-exclusive
theories using Bayesian updating. The procedure is robust because it allows researchers
to test their conclusions for sensitivity to their assumptions and the strength of their ev-
idence. The software facilitates reproducible research because evidence, beliefs, and un-
certainty about them are transparently and rigorously mapped into conclusions that can
be verified at will. Finally, and perhaps most importantly, the software lowers the barrier
to entry of using Bayesian methods by stressing visually intepretable cues.
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Recent scholarship has emphasized the deep connection between qualitative method-

ology, particularly process tracing, and Bayesian reasoning (Rohlfing, 2012, Chapter 8;

Bennett, 2015; Humphreys and Jacobs, 2015). Part of the motivation for this scholar-

ship has been the desire to maximize the transparency, reproducibility, and robustness

of research using this method (Elman and Kapiszewski, 2014, Moravcsik (2014), Elman,

Gerring and Mahoney (2016)). Explicit, mathematical Bayesian reasoning is important be-

cause “linking evidence to inference lies at the heart of analytic transparency” (Bennett,

Fairfield and Soifer, 2019, p. 2). It “ensures clear identification and careful assessment

of salient evidence” and “facilitates more effective communication of degrees of belief”

(Fairfield and Charman, 2017, p. 376). It pushes “researchers to make specific and public

the assumptions they must make implicitly for process tracing to work” (Bennett, 2015,

p. 297).

*Current version: November 13, 2024; Corresponding author: justin@justinesarey.com.
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This scholarship also lays out some barriers to widespread adoption of Bayesian pro-

cess tracing (BPT). The first is that “substantial time, effort, and training [is] required”

to employ Bayesian methods (Bennett, Fairfield and Soifer, 2019, p. 11). Applying these

frameworks can be “a very tall order” because it is not a standard part of current quali-

tative research practices: “rarely do scholars indicate probabilities for these observations

for different possible causal effects or specify the uncertainty they hold over these proba-

bilities” (Humphreys and Jacobs, 2015, p. 671). Unfortunately, “a day or two of intensive

workshops is not adequate to successfully apply this approach” (Fairfield and Charman,

2017, p. 376). Given that the “start-up costs are significant” for using them, BPT must

“justify the opportunity costs of investing in it” (Zaks, 2021, p. 71).

Another problem is a lack of agreement on how evidence should be translated into

conclusions in a standardized way. This point is repeatedly made in the existing litera-

ture, particularly as it concerns the conversion of qualitative statements of evidence into

quantitative probability distributions. “In the social sciences, there is no clear procedure

for translating complex, narrative-based, nonreproducible, often qualitative information

into precise probability statements” (Fairfield and Charman, 2017, p. 376). Zaks (2021)

notes that, “although it appears to provide a rigorous template for iterative research,

methodologists implementing the technique exhibit contradictory and counterintuitive

practices when it comes to updating priors as they examine additional evidence” (p. 71).

She also highlights a need to “test whether and to what extent biases arise in practice

when conjuring and evaluating quantities like the prior and likelihood functions (p. 72).

Finally, a major outstanding problem in the literature on Bayesian hypothesis testing

concerns the assessment of partially rival and partially complementary hypotheses. These

are hypotheses whose truth statuses are neither completely mutually exclusive nor com-

pletely unrelated. Current methods of Bayesian process tracing are incapable of simulta-

neously or comparatively testing these hypotheses (Zaks, 2021, p. 67):

The Bayesian approach is not equipped to handle the range of forms hypothe-
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ses and evidence tend to take. The problems are both substantive and mathe-

matical, which together result in a method that is more limited than any of its

proponents acknowledge. Substantively, the method encourages an oversim-

plification of the world by sidestepping the frequency with which two causal

factors together bring about an outcome.

This paper addresses these problems by developing and presenting new software de-

signed to facilitate full, formal Bayesian process tracing by scholars without extensive

mathematical training. The software is freely available on the web, usable by anyone

with a browser and an internet connection. It provides a standardized format for specify-

ing hypotheses, entering descriptions of and/or direct links to qualitative or quantitative

evidence, and visually specifying the consistency of the evidence with these hypotheses

using widely understood graphs. The software can accommodate statistical dependence

in interpretation of the evidence (i.e., that the consistency of evidence with a hypothe-

sis depends on other evidence). It also implements a new method—developed and pre-

sented in this paper—for using evidence to simultaneously update our posterior beliefs

about two theoretical explanations that are not mutually exclusive but whose truth status

may be interdependent.

The conclusions facilitated by the software are also readily interpretable; it produces

graphical presentations of the posterior beliefs about the hypothesis that are consistent

with that evidence and with Bayes’ rule. Perhaps most importantly, the software allows

for easily testing the robustness of conclusions to different intepretations of evidence and

possible biases that might have been present in those interpretations. Finally, the software

produces a report summarizing the entire process and allowing anyone to reproduce it.

The source code is open under a Creative Commons license for those who wish to exam-

ine or modify its operation.

The remainder of the paper proceeds as follows. First, it reviews the method of

Bayesian process tracing, making note of variations in the literature and laying mark-
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ers for what software needs to do. It focuses on how some critiques in the literature can

be addressed, especially how new software can lower the start-up cost of using BPT and

help researchers ensure their conclusions are robust to different interpretations of the ev-

idence adduced. The paper then presents a new approach to drawing inferences about

theories that are not mutually exclusive. Finally, it presents the software and describe

how it is used. A simple motivating example common to this literature, the investigation

of a crime, is followed through the entire paper.

Applying Bayesian methodology to process tracing

The core logic of process tracing, as described by Van Evera (1997, pp. 64-67), is finding

pieces of evidence that are logically consistent (or inconsistent) with casual mechanisms

hypothesized by the researcher to be in operation for a case. Bayesian process tracing

translates these pieces of evidence into expressions of the probability that the evidence

is consistent with that causal mechanism. Finally, it uses Bayes’ rule to determine how

confident we should be in our hypothesis given that evidence. In this section, we review

that process in depth.

As noted in the introduction, not everyone interprets this basic idea in the same way.

For example, Humphreys and Jacobs (2015) (p. 653) present a framework for “Bayesian in-

tegration of quantitative and qualitative data (BIQQ)” that stresses differentiating types of

cases from one another based on their counterfactual response to a treatment (p. 656). The

hypotheses being tested in their framework are about parameters linking independent to

dependent variables, not about the truth or falsity of overarching theoretical mechanisms.

Given these parameters, individual observations have an unknown type that determine

whether and how their outcome changes according to their treatment status. Thus, the

aim of the BIQQ framework is to produce a belief distribution about a vector of parame-

ters and the unobservable types of cases of interest. This distribution is partially informed

by qualitative information about some of the observations used in an otherwise quantita-
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tive analysis (p. 660).

By contrast, the procedure laid out by Rohlfing (2012) and Fairfield and Charman

(2017)—and the approach we will take in this article—allows for much more mechanism-

centered (and qualitative) hypotheses in addition to parametric hypotheses.1 Consider

an example hypothesis about Chilean tax reform offered by Fairfield and Charman (2017,

p. 374):

HI : The opposition accepted the reform because Chile’s institutionalized party system

motivates cross-partisan cooperation and consensual politics.

In this framework, evidence can also include qualitative statements of findings:

E1: Governing-coalition informants told the investigator that the center-left coalition

discussed including a measure to eliminate the tax subsidy in multiple prior tax re-

forms, but that measure was ruled out as infeasible on every occasion due to resistance

from the right coalition.

Investigators using this framework must specify the degree to which each piece of

evidence (including that derived from qualitative case studies) is consistent with the hy-

pothesis, Pr (E1|HI). The same must be done for the consistency of evidence with rival

hypotheses (Fairfield and Charman, 2017) or the original hypothesis’s negation, the null

(Rohlfing, 2012, pp. 189-190). Bayes’ rule is then used to translate this evidence and prior

beliefs about the hypothesis Pr(HI) into updated posterior beliefs about the hypothesis

Pr (HI |E1).

Basic Bayesian process tracing

For example, a “hoop test” (Van Evera, 1997, p. 31; see also Collier, 2011) looks for a piece

of evidence that can only exist if a theory is false; if that evidence exists, the theory is

1See also Fairfield and Charman (2019).
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falsified. A canonical example is an alibi, which—if it exists—demonstrates that a suspect

could not have committed a crime. However, the absence of an alibi does not demonstrate

that the suspect is guilty, although it may raise the belief of the suspect’s guilt.

In words, a hoop test uses evidence that cannot exist if the theory is false and might

exist if it is true. This reasoning is easily translated into the language of mathematical

Bayesian inference. For a hoop test of a theory T which is either true or false (¬T), we

look for evidence x. We then update our belief in the theory accordingly. For binary

evidence x ∈ {x0, x1}, such as in the example of having an alibi or not, then:

Pr(x = x1|T) = 0 and Pr(x = x0|T) = p

We can then use this evidence along with our prior (pre-evidence) belief that the theory

is true, Pr(T), to rationally update our beliefs on the basis of the evidence we observe:

Pr(T|x) = Pr(x|T)Pr(T)
Pr(x)

=
Pr(x|T)Pr(T)

Pr(x|T)Pr(T) + Pr(x|¬T)(1− Pr(T))

In this case, the “hoop test” is strongly informative under some circumstances. To con-

tinue our previous example, when a suspected perpetrator of a crime has an alibi, x = x1,

we conclude that the theory they are guilty (T) is false because Pr(x = x1|T) = 0 and

therefore the numerator of Pr(T|x = x1) must be zero:

Pr(T|x = x1) =
Pr(x = x1|T)Pr(T)

Pr(x = x1|T)Pr(T) + Pr(x = x1|¬T)(1− Pr(T))
= 0

Formal mathematical reasoning is hardly necessary to draw this conclusion: when a hoop

test is failed, this leads to unequivocal rejection of the theory. But when a hoop test is

passed (when the suspect does not have an alibi, x = x0, in our running example) we

still learn something. It’s here where we begin to see the utility of translating the logic of
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process tracing into Bayesian language:

Pr(T|x = x0) =
Pr(x = x0|T)Pr(T)

Pr(x = x0|T)Pr(T) + Pr(x = x0|¬T)(1− Pr(T))

=
p Pr(T)

p Pr(T) + q(1− Pr(T))
(1)

Our belief about T, that a particular suspect is guilty of a crime, now depends on three

factors: how often guilty people do not have alibis, p = Pr(x = x0|T) (which, in a hoop

test, must be equal to 1); how often innocent people do not have alibis, q = Pr(x =

x0|¬T); and our a priori belief that the suspect was guilty, Pr(T). If an investigator wanted

to know how they should change their belief about a suspect’s guilt when the suspect had

no alibi, they could draw that conclusion by specifying these quantities. The conclusion

flows mathematically from them, and that conclusion can be verified and reproduced by

specifying them. Furthermore, the sensitivity of the conclusion to these quantities can be

assessed by systematically varying them.

Figure 1 shows how evidence is mapped into conclusions. The x-axis shows the prior

probability Pr(T). The y-axis shows q, the probability of a suspect having no alibi when

they are innocent. As this is a hoop test, p = 1. The color of the corresponding point on

the graph is the updated belief that the suspect is guilty given that they don’t have an

alibi. The reader can see (and, if desired, reproduce) the analysis connecting the evidence

p and q and the prior belief Pr(T) to the author’s ultimate inference about Pr(T|x) by

simply looking at the appropriate plot. Furthermore, if the reader disagrees with the

author’s interpretation of the evidence (for example, if the reader believes that innocent

suspects are more or less likely to have alibis compared to the author), it is easy to assess

the sensitivity of the author’s conclusion to that interpretation. In this case, the figure

makes clear that lacking an alibi is only persuasive evidence of guilt in the implausible

scenario where innocent people rarely or never have alibis, or when we already strongly

suspected their guilt even before discovering they had no alibi.
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Figure 1: Mapping evidence into conclusions (updated posterior beliefs after a passed
hoop test)
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Compound evidence

The example above considers a single piece of binary evidence with strict, stark impli-

cations for the truth of a theory. Although formal analysis is useful in this case, it is

among the simplest qualitative inference scenarios possible. Our analysis is much more

useful when there are many pieces of evidence, that evidence does not point directly to a

single conclusion, and our beliefs about that evidence are uncertain. Consider evidence

y ∈ {y0, y1}:

Pr(T|y = y0) < Pr(T) < Pr(T|y = y1)

To continue the example from before, y is akin to whether the suspect has a motive to com-

mit a crime. Motive does not imply guilt, and a lack of motive does not imply innocence.

However, we would expect that discovering that a person has a motive would raise our

assessment of the probability of their guilt, while discovering they have no motive would

reduce that assessment. And, if a person had no alibi and did have a motive, the combi-

nation would be more incriminating than either in isolation. In the case where we have

already provided px and qx from equation 1, we need only provide the additional quan-

tities py and qy to determine the updated belief Pr(T|x = x0, y = y1):

Pr(T|x = x0, y = y1) =
Pr(x = x0, y = y1|T)Pr(T)

Pr(x = x0, y = y1|T) + Pr(x = x0, y = y1|¬T)

=
px py Pr(T)

px py Pr(T) + qxqy(1− Pr(T))

px = Pr(x = x0|T) qx = Pr(x = x0|¬T)

py = Pr(y = y1|T, x = x0) qy = Pr(y = y1|¬T, x = x0)

For example, suppose that we believe (based on background information) that there

is a 10% chance that a particular suspect committed a crime, that suspect has no alibi, and

that suspect also has a motive to commit the crime. To form a belief about their guilt, we

must specify:
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1. px: What proportion of guilty suspects have no alibi? This must be close to 100%, as only

in very unusual circumstances would a person responsible for a crime be able to

apparently prove they were somewhere else when the crime was committed. How-

ever, we relax our previous strict assumption of the hoop test by presuming there

is a small chance that a guilty person has an alibi, perhaps because they have been

able to falsify one or because of a case of mistaken identity. Thus, we set this at 95%.

2. qx: What proportion of innocent suspects have no alibi? Anyone (except the guilty party)

who cannot establish their whereabouts during the time frame of the crime fits into

this category; 50% seems like a reasonable figure.

3. py: What proportion of guilty suspects have a motive? Some types of criminals, such

as serial killers, may commit crimes in the absence of some financial or emotional

connection to the victim. However, we think it it safe to presume that most crimes

are committed for a reason. We set this at 90%.

4. qy: What proportion of plausible but innocent suspects have a motive? The reference

group is critical here. The vast majority of people in the full population have no

motive; indeed, they have no connection at all to anything related to the crime. But

for most of these people our prior probability of guilt would also be ≈ 0. These

cases represent zero-weight components in the denominator of Pr(T|x, y). Thus,

¬T should be understood to encompass a set of alternative theories, (Q \ T) ⊆ Ω

such that Pr(Q ∈ Q) > 0 is the set of plausible alternatives with non-zero prior

probability. Even with this limiting proviso, the answer may vary widely according

to the situation; victims can have few people who wish them harm, or many.

5. Pr(T): What is our a priori belief that the suspect is guilty? This answer can also vary

widely according to the details of the situation.

Figure 2 shows the conclusion we can draw under various assumptions about a priori

belief (on the x axis) and the probability of innocent suspects having a motive (on the y

axis), setting other values in the calculation constant as assumed. As the figure shows, if
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we have a relatively low (< 12.5%) prior belief of guilt, even this combination of evidence

is often not particularly incriminating unless almost no innocent suspects have a potential

motive.

Figure 2: Mapping compound evidence into conclusions
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Uncertainty in interpretation

The above example is limited in several ways. First, although there are five pieces of

information that go into the final judgment, it is difficult for us to fully explore the sensi-

tivity of our judgment to all of them simultaneously. Visualizations such as Figure 2 will

struggle to show the combined effect of more than two or three changes at once. Second,

although Figure 2 can show the relationship between py, the prior Pr(T), and the final

conclusion about Pr(T|x, y), that conclusion still assumes fixed values for py and Pr(T)

(as well as all the other components in the calculation). In practice, we will typically be

more uncertain about the interpretation of our evidence than this procedure implies.

11



Going back to the example of equation 1, consider the possibility that we are uncertain

about Pr(x = x0|¬T). Substantively, this corresponds to the idea that we aren’t sure how

often innocent people do not have alibis. In that case, we need to integrate over the

distribution of this uncertainty, gx(qx):

Pr(T|x = x0) =
∫ px Pr(T)

px Pr(T) + qx(1− Pr(T))
gx(qx)dqx

When there are multiple uncertain terms in the calculation, they must all be integrated

out. Continuing the above example, we may also be uncertain about px, the probability

that guilty people do not have an alibi. In this case, we must determine:

Pr(T|x = x0) =
∫∫ ( px Pr(T)

px Pr(T) + qx(1− Pr(T))
fx(px|qx)

)
gx(qx)dpxdqx (2)

This is our posterior belief about the probability that the suspect is guilty. However, it is

important to point out that probability is itself uncertain; there is an implicit distribution

h(t) which gives the probability (density) that Pr(T|x = x0) equals some candidate value

t ∈ [0, 1]. For a particular value of t, this is:

h(t|x = x0) =
∫∫

S(t)
fx(px|qx)gx(qx)dpxdqx

S(t) =
{
(px, qx)

∣∣∣∣ px Pr(T)
px Pr(T) + qx(1− Pr(T))

= t
}

Thus, in principle, we can calculate not only our expectation of the probability that the

theory is true. We can also determine how certain we are about that belief, and express

this uncertainty precisely as a probability density function h(t|x = x0) that is rigorously

and reproducibly linked to the evidence we laid out in advance.

As the number of uncertain terms expands, these calculations become arbitrarily more

analytically complex. However, this is a common and surmountable problem in Bayesian

statistics: we can use techniques from Monte Carlo integration instead of analytical calcu-
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lation to accomplish them all (Robert and Casella, 2004). In the example above, as long as

the distributions fx(•) and gx(•) are known, we can draw many samples from them and

calculate the value of Pr(T|x = x0) for each sample. The result is a set of samples of val-

ues of t from the posterior belief distribution h(t|x = x0). The expected value in equation

2 can be calculated by simply calculating the mean of these samples, with the accuracy of

this calculation an increasing function of the number of samples of t we create.

This procedure can be extended to uncertainty about other parameters as well, in-

cluding our prior belief about the theory. Consider the previous example of forming a

conclusion about the guilt of a suspect who has a motive and no alibi:

Pr(T|x = x0, y = y1) =
px py Pr(T)

px py Pr(T) + qxqy(1− Pr(T))
(3)

As laid out above, there are five pieces of information that must be supplied and about

which we might be uncertain: px, qx, py, qy, and the prior Pr(T). As probabilities, these

are bounded between 0 and 1 and any distributions must be similarly bounded. We there-

fore use truncated normal distributions φT(•) and uniform distributions U[•] to set this

information:
px ∼ φT(0.95, 0.1) qx ∼ φT(0.5, 0.2)

py ∼ φT(0.9, 0.1) qy ∼ φT(0.7, 0.25)

Pr(T) ∼ U[0, 1]

These assumptions represent that we are reasonably certain that guilty people have no

alibis (px) and do have a motive (py), have a lower and less-certain belief that innocent

people have no alibi (qx), believe with considerable uncertainty that many innocent peo-

ple will have a motive (qy), and have a highly uncertain a priori belief that the suspect is

guilty (Pr(T)).

The posterior beliefs about a suspect’s guilt implied by this evidence are illustrated

by Figure 3. We produced this belief distribution by drawing one million samples from
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Figure 3: Mapping uncertain evidence into conclusions

each of the distributions for px, py, qx, qy, and Pr(T), then calculating Pr(T|x = x0, y =

y1) for each one. Our median belief is that 74 out of every 100 suspects with a motive

and no alibi will be guilty; that represents a reasonably high assessment. And yet, our

confidence in this assessment is relatively low. As we see in the boxplot, we also believe

that there is a 25% chance that fewer than half (46 out of 100) suspects are guilty under

these conditions. If avoiding “false positive” results (mistaken conclusions of guilt) is of

paramount importance, we would not find this evidence persuasive.

Confidence and likelihood

The distinction between confidence and probability (or likelihood) raised by the previous

example is worth lingering on for a moment. In some ways, the laws of probability ob-

scure this distinction because in some cases it does not matter. Consider, for example, an

outcome that has value va if event A occurs and value v0 otherwise. Then the expected
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outcome is:

Pr(A) ∗ va + (1− Pr(A))v0 (4)

In this case, it does not matter if A is actually a composite of multiple possibilities. For

example, suppose that there are two ways that A might occur, one more likely than the

other, that depends on the presence of an a priori unknowable stochastic background fac-

tor x. Then:

Pr(x) [Pr(A|x) ∗ va + (1− Pr(A|x)) ∗ v0] +

(1− Pr(x)) [Pr(A|¬x) ∗ va + (1− Pr(A|¬x)) ∗ v0]

We can rearrange this as:

[Pr(x)Pr(A|x) + (1− Pr(x))Pr(A|¬x)] va+

[Pr(x)(1− Pr(A|x)) + (1− Pr(x))(1− Pr(A|¬x))] v0 (5)

Equations 4 and 5 are equivalent because of the principle of additivity:

Pr(x) ∗ Pr(A|x) + (1− Pr(x)) ∗ Pr(A|¬x) =

Pr(A|¬x) + Pr(x)(Pr(A|x)− Pr(A|¬x)) = Pr(A)

The equivalence of equations 4 and 5 is the core of the expected utility theorem describing

rational choice under uncertainty (Mas-Colell, Whinston and Green, 1995, pp. 176-178).

It is a property of von Neumann-Morganstern utility functions, which encapsulate pat-

terns of preference over uncertain outcomes under a small set of assumptions designed

to encapsulate rationality. The reducibility of compound lotteries is so foundational to

rational choice theory that it will often be perceived as intuitive to scholars in that area; it

is written indelibly on the heart of anyone trained in the rational choice tradition.
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And yet, if our purpose is to come to accurate conclusions about the probability that

a theory is true, compound lotteries are not reducible in this way. Consider the following

revision of our continuing example, where we have revised our assumptions about the

evidence of a suspect’s guilt:

px ∼ φT(0.95, 0.05) qx ∼ φT(0.5, 0.1)

py ∼ φT(0.9, 0.05) qy ∼ φT(0.7, 0.1)

Pr(T) ∼ U[0.4, 0.6]

The expected values of all five parameters are the same as before. However, we have

increased our confidence in all five. For example, we previously stated that our prior

belief about the suspect’s guilt was Pr(T) ∼ U[0, 1], so that E [Pr(T)] = 0.5. This is still

true in our revised assumptions, but now Pr(T) ∼ U[0.4, 0.6]; we are much more certain

that the suspect is about 50% likely to be guilty before we see any evidence.

Figure 4: A more confident belief in the same probability of guilt
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These revised assumptions translate into the same expected belief as before: 71 out

of every 100 suspects with a motive and no alibi will be guilty. But our certainty in this

belief is much stronger, as shown by Figure 4. Now, we think there is only a very small

chance (0.17%) that fewer than half of suspects are guilty under these conditions.

What is the practical difference in the beliefs represented by Figure 3 and Figure 4?

Both say there is an ≈ 74% chance that a theory is true—that we are “right,” if our goal is

to provide evidence for that theory—and thus an ≈ 26% chance that we are wrong. But

Figure 3 illustrates that there is a chance that we are very wrong in a way that isn’t as

possible for the beliefs in Figure 4.

One way of conceptualizing the difference between the two distributions is to consider

the decision efficiency loss created by using less certain beliefs. If one could choose to

have the beliefs represented by Figure 3 or Figure 4, assuming both would be equally

accurate when we chose them, which would be preferable? Let our posterior belief about

Pr(T|x) be denoted t and its true value be equal to t?. A typical approach (French and

Insua, 2000, Chapter 6) is to presume that decision makers experience losses L(t) by using

inaccurate beliefs, where L(t?) = 0 (that is, we experience no loss when our beliefs are

accurate). The nature of the loss depends on the nature of the specific decision being

made, but a common assumption is that losses are quadratic in the distance between the

correct and erroneous belief:

L(t, t?) = (t− t?)2 (6)

When the t? is stochastic so that t? ∼ h(t), then for any single event a true value of t?

is drawn from h(t) and then the outcome is chosen from {T,¬T} according to Pr(T) = t?.

We must make a decision before the particular realization of t? is known, and so the loss

depends on our choice as well as the particular realization of t?, L(t, t?). The expected

loss of a choice t is: ∫
L(t, t?)h(t?)dt
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When the loss is quadratic (as in equation 6), the loss-minimizing decision is E[t] =∫
t ∗ h(t) = τ? (see Propositions 20 and 23 on pp. 149-152 of French and Insua, 2000).

Thus, the expected loss is:

E[L] =
∫
(E[t]− t?)2 ∗ h(t?)dt?

=
∫
(t? − E[t])2 ∗ h(t?)dt?

= Var[t?]

Consequently, more certain beliefs (i.e., lower variance beliefs) about t are preferable in

that they minimize expected decision losses. We therefore have good reason to perceive

the beliefs of Figure 4 as being different than those of Figure 3, and to prefer the more

confident beliefs from Figure 4.

Robustness checking

The example above shows how more restrictive prior beliefs about a suspect’s guilt trans-

lates into different (and more certain) posterior beliefs about that guilt given the same

evidence. It also demonstrates the general principle of assessing the robustness of the

conclusions of BPT to the assumptions that go into the process. These assumptions in-

clude prior beliefs, but also (and perhaps more importantly) include differences in inter-

pretation of the evidence.

For example, one of the key pieces of evidence in the example is that the suspect had

a motive to commit the crime. We assumed above that 70% of plausible but innocent sus-

pects have a motive for committing the crime, with uncertainty about that interpretation.

How sensitive is our conclusion to this interpretation of the evidence? To find out, we

can systematically vary this assumption to see how it impacts our conclusions (holding

all the other elements of the calculation constant).

Figure 5 demonstrates this idea. In this figure, we set all parameters in the same way
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Figure 5: Assessing the robustness of conclusions to interpretation of evidence

we did for Figure 4 except for py. For this parameter, we set a fixed value of 0.1, 0.3, 0.5,

0.7, or 0.9 and calculate Pr(T|x = x0, y = y1) as before but separately for each of these val-

ues. We then plot those posterior belief distributions separately. As the Figure shows, our

conclusion depends on how we think about the importance of a suspect having a motive.

If we think that almost no innocent people have a motive (py = 0.1), we strongly believe

in the suspect’s guilt. But if we think even slightly more innocent people have motives,

our posterior beliefs about this suspect’s guilt become considerably less confident.

Testing partially rival and partially complementary hypotheses

Continuing our running example of a criminal investigation, it will often be the case that

one suspect’s guilt tends to exculpate other suspects because we have little a priori reason

to suspect a multi-person conspiracy. Thus, as our confidence in one suspect’s guilt rises,

our confidence in other suspects’ guilt should fall. However, even completely certain
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knowledge that one suspect is guilty usually does not definitively rule out the guilt of

other suspects, particularly if some evidence tends to inculpate them in the crime. Thus,

the hypothesis that one particular suspect is guilty is partially rival with the hypothesis

that other suspects are guilty. Symmetrically, there are also partially complementary hy-

potheses where the truth of one will tend to be positively associated with the truth of the

other.

As noted in the introduction, current Bayesian process tracing methods are unable to

simultaneously test partially rival or partially complementary theories (Zaks, 2021, p. 67).

If two theories are mutually exclusive—that is, if only one theory from the pair can be

true—then Bayes’ factors can be used to examine the degree to which evidence supports

one theory over the other (Fairfield and Charman, 2017). A Bayes factor is the ratio of

posterior probability densities for two theories, {T1, T2}. If there are two suspects and at

most one can be guilty, then we should form beliefs about those two suspects’ guilt given

evidence x in the following way:

Pr(T1|x) =
px Pr(T1)

px Pr(T1) + qx Pr(T2) + rx (1− Pr(T1)− Pr(T2))

Pr(T2|x) =
qx Pr(T2)

px Pr(T1) + qx Pr(T2) + rx (1− Pr(T1)− Pr(T2))

Where px is the likelihood of observing the evidence x if the first suspect is guilty, qx is

that likelihood if the second suspect is guilty, and rx is that likelihood if neither is guilty.

The Bayes factor comparing these two theories is:

BF =
px Pr(T1)

qx Pr(T2)

Larger numbers tend to favor T1 over T2. Fairfield and Charman (2017, p. 372) recom-

mend interpreting the logarithm of this ratio in a way analogous to the decibel scale

for loudness of sound, with log10(BF) ≥ 30 (metaphorically, when the evidence speaks

louder than 30 decibels) indicating that T1 is “strongly favored” over T2. This technique
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cannot be employed if T1 and T2 are not mutually exclusive, and is perhaps most useful

when they are mutually exhaustive (that is, when one of the two theories must be true

and the Bayes factor tells us which we should believe given the evidence).

Copula modeling of correlation among the truth of interdependent theories

But what about the situations shown in Figure 6? Here, we also have two theories that

we are assessing with the same evidence. However, these theories are only partially ri-

val; their truth status is interdependent. Negative correlations signal partially rival hy-

potheses, with each theory’s truth status being negatively associated with the probabil-

ity of the other’s; positive correlations ρ > 0 signify partially complementary theories,

where greater confidence in the truth of one theory increases our belief in the truth of the

other. Stronger correlations indicate a stronger interdependence between the truth status

of the theories, although even when |ρ| = 1 the theories are not mutually exclusive unless

f (τj|Ti) is a point mass at τj = 0 for i 6= j. Thus, when we form a posterior belief about T1,

we must incorporate what we know about T2 into this belief. Let τi equal the probability

that Ti is true. We can write:

Pr(T1|x, τ2) =
Pr(x, τ2|T1)Pr(T1)

Pr(x, τ2|T1)Pr(T1) + Pr(x, τ2|¬T1)(1− Pr(T1))

=
Pr(x|τ2, T1) f (τ2|T1)Pr(T1)

Pr(x|τ2, T1) f (τ2|T1)Pr(T1) + Pr(x|τ2,¬T1) f (τ2|¬T1)(1− Pr(T1))

where f (τ2|T1) is the probability distribution function for τ2 when Theory 1 is true. Under

most circumstances we can further simplify this expression to:

Pr(T1|x, τ2) =
Pr(x|T1) f (τ2|T1)Pr(T1)

Pr(x|T1) f (τ2|T1)Pr(T1) + Pr(x|¬T1) f (τ2|¬T1)(1− Pr(T1))

because the (possibly counterfactual) consistency of a piece of evidence under a particular

theory would usually not be influenced by probability that a different theory is true.
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Figure 6: Partially rival hypotheses
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Conditional probability densities for interdependent theories

We presume that the researcher knows that Pr(T1|x) and Pr(T2|x) are correlated, but not

the exact relationship between the two. We model this by assuming that they are dis-

tributed using a normal copula with the appropriate correlation. By approaching the

problem this way, the marginal distributions of Pr(T1|x) and Pr(T2|x) are uniform; thus,

the assumption of interdependence does not add information to our conclusions (unless

we fix the value of one or the other). This distribution implies a probability density for

Pr(Ti|x, Tj) and Pr(Ti|x,¬Tj); for example, if Tj is true, then:

f
(
τi|x, Tj

)
∝
∫ 1

0

(
f (τi, τj|x)× τj

)
dτj (7)

That is, we integrate out τj from the joint distribution at the target value of τi, weighted

by the probability that Tj is true given the particular value of τj (which is simply τj). This

function must be normalized by the total area of the function under τi to become a proper

probability density (i.e., that sums to 1 under its admissible range). Equation 7 has a

simple form: it is the least-squares regression line for the copula, the line shown in each

of the examples of Figure 6, with slope equal to the correlation.

Drawing samples from interdependent posteriors

The conditional posterior belief densities implied by equation 7 require a more complex

sampling strategy than our earlier examples. Drawing samples from the component den-

sities to construct a sample, as we did in Figures 3 and 4, will no longer work because the

likelihood of τ1 depends on the value of τ2 and vice versa.

Instead, we must employ Gibbs sampling (Robert and Casella, 2004, Chapter 9). The

method is a familiar tool from Bayesian statistics. We construct Markov chains of length

K, with the kth entry (τ1k, τ2k). After setting initial values for τ11 and τ21, we draw the
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following values sequentially from the appropriate conditional distribution:

τ1k ∼ f
(

τ1|x, τ2(k−1)

)
τ2k ∼ f (τ2|x, τ2k)

That is, the value of τj upon which the distribution of τi depends are fixed according to

the previous values of the chain. As long as the chain is ergodic, it will converge to the

appropriate limiting distribution as K → ∞ (Robert and Casella, 2004, pp. 343-353). The

conditional distributions can be sampled from as before, by simply sampling from the

component distributions.

An example inference

Continuing our running example, suppose there are two suspects who may have com-

mitted a crime. T1 is that the first suspect is guilty; T2 is that the second suspect is guilty.

We further believe that the suspects’ guilt is interdependent. In this example, we consider

two pieces of evidence, x and y. These pieces of evidence tend to incriminate suspect #1

and weakly exonerate suspect #2. For example, suppose that x indicates that suspect #1

has no alibi; this is highly consistent with the first suspect being guilty and relatively in-

consistent with the second suspect being guilty, although there is some possibility that

the two suspects are collaborating in some way. Evidence y indicates that suspect #1 has

a motive to commit the crime. Finally, we think that suspect #2 may be involved with the

crime, but our prior belief about this involvement is quite uncertain. We represent the
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situation formally as:

p1x ∼ φT(0.95, 0.05) q1x ∼ φT(0.5, 0.1)

p1y ∼ φT(0.9, 0.05) q1y ∼ φT(0.7, 0.1)

Pr(T1) ∼ U[0.4, 0.6]

p2x ∼ φT(0.35, 0.1) q2x ∼ φT(0.7, 0.1)

p2y ∼ φT(0.4, 0.1) q2y ∼ φT(0.8, 0.1)

Pr(T2) ∼ U[0.3, 0.7]

Above, pix = Pr(x|Ti) indicates the conditional probability that evidence x occurs when

Ti is true while qix = Pr(x|¬Ti) is that same probability when Ti is false.

Figure 7 shows the result of an analysis of this evidence presuming different values

of correlation between the guilt of the two suspects. The middle panel, with dependence

ρ = 0, is our posterior belief about suspect #1 (left) and suspect #2 (right) when the sus-

pects’ guilt is statistically independent; in this case, the evidence leads us to conclude

that suspect #1 is likely but not indubitably guilty, whereas our beliefs about suspect

#2 remain very uncertain. By contrast, if we know that the theories are partially rival

(top panel, dependence ρ = −0.8), the evidence much more strongly incriminates sus-

pect #1 and exonerates suspect #2. However, if we think that the theories are partially

complementary—that is, the guilt of suspect #1 is positively associated with the guilt of

suspect #2—then the evidence weakly exonerates both suspects precisely because it is

only weakly supportive of suspect #2’s guilt, and because we have reason to believe that

it is unlikely that only one suspect is guilty.
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Figure 7: Jointly testing partially rival hypotheses
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Software

All of the analysis in this paper can be implemented in the R statistical software environ-

ment (R Core Team, 2024), and full replication code will be available upon publication

of the paper. However, the paper also introduces a Bayesian Process Tracing application

that also allows users to implement these methods without a need to code. That applica-

tion is available at https://shiny.justinesarey.com/bpt-app. It uses the Shiny Server web

hosting platform (Chang et al., 2024), which relies on R for the underlying computation

and data visualization. The underlying for the Shiny application will also be available as

part of the replication materials for this paper on publication.

A screenshot of the Shiny application is shown in Figure 8. The figure shows the ini-

tial screen for the application when the user loads it in a browser. The application allows

for three different types of test to be conducted: comparing a theory to its logical com-

plement (the theory being false, sometimes referred to as the null hypothesis); comparing

a theory to a mutually exclusive and non-exhaustive rival hypothesis; and simultane-

ously assessing two non-exclusive theories with a possibly interdependent truth status.

This screen allows the user to input the nature of the theory (including any alternative, if

necessary) and to specify prior beliefs (including interdependence among rival theories,

where needed).

Use of the application proceeds using the tabs at the top of the screen. After the theory

and prior beliefs are specified, evidence is entered in using the second tab. An arbitrary

number of pieces of evidence can be entered here. For each piece of evidence, a user can

specify how consistent the evidence is with the theory being true or false. Once this is

done, the application will produce the posterior belief distribution corresponding to the

tested theory.

We inputted the evidence from the example in Figure 7 above, with suspect 1 having

no alibi and a motive to commit a crime, and produced the posterior belief distribution
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Figure 8: A screenshot of the initial screen of the Bayesian Process Tracing Shiny app.
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shown in Figure 9 using the app. For this computation, we set rho = 0. Figure 9 shows

the posterior belief density for the theory that Suspect 1 is guilty.

Figure 9: A screenshot of the inference screen of the Bayesian Process Tracing Shiny app
for the crime problem shown in Figure 7, ρ = 0

This exercise using the web application makes it clear that inferences drawn using

this procedure are highly transparent and easily replicable: the inferences from Figure 7

for ρ = 0 are substantively identical to those from Figure 9, even though Figure 7 was

produced natively in R without use of the app and Figure ?? was produced much later.

It also makes it clear how easy it is to check the robustness of conclusions drawn using

this procedure: once we have successfully replicated the result in the app, we can adjust

the parameters for the prior distributions and the likelihoods for pieces of evidence to

determine how much the original conclusion changes as these assumptions change.

Conclusion

This paper reviewed how qualitative evidence can be interpreted through the lens of

Bayesian inference using Bayesian Process Tracing. To do so, each piece of evidence x

must be (qualitatively) evaluated for its consistency with a given theory T. Specifically,
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the analyst must evaluate the probability of observing x when the theory is true, Pr(x|T),

and the probability of observing x when the theory is false, Pr(x|¬T). Along with the

prior (pre-evidence) belief that the theory is true Pr(T), these judgments can be translated

via Bayes’ rule into a posterior belief about whether the theory is true, Pr(T|x).

The precision and rationality of this process, and the intrinsic transparency and repro-

ducibility that it provides, are methodologically appealing. But it is more easily said than

done in practice: the training required is significant. Nor does extant technique allow for

several common complications, such as the simultaneous testing of partially rival and/or

non-mutually exclusive theories that explain the same event.

The paper offers solutions to both of these problems. First, it introduces a browser-

based application that allows anyone to make Bayesian inferences with qualitative evi-

dence. Second, it proposes a copula-based method for allowing interdependence between

the truth status of multiple non-exclusive theories. To overcome the analytical difficulties

of computing posterior belief densities for statistically dependent theories conditional on

multiple pieces of evidence, the paper leverages well-known techniques from Bayesian

statistics to build up samples from the target density using Monte Carlo methods.
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